Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 67(5): 3935-3958, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38365209

RESUMEN

As SARS-CoV-2 continues to circulate, antiviral treatments are needed to complement vaccines. The virus's main protease, 3CLPro, is an attractive drug target in part because it recognizes a unique cleavage site, which features a glutamine residue at the P1 position and is not utilized by human proteases. Herein, we report the invention of MK-7845, a novel reversible covalent 3CLPro inhibitor. While most covalent inhibitors of SARS-CoV-2 3CLPro reported to date contain an amide as a Gln mimic at P1, MK-7845 bears a difluorobutyl substituent at this position. SAR analysis and X-ray crystallographic studies indicate that this group interacts with His163, the same residue that forms a hydrogen bond with the amide substituents typically found at P1. In addition to promising in vivo efficacy and an acceptable projected human dose with unboosted pharmacokinetics, MK-7845 exhibits favorable properties for both solubility and absorption that may be attributable to the unusual difluorobutyl substituent.


Asunto(s)
COVID-19 , Glutamina , Humanos , Glutamina/química , SARS-CoV-2 , Cisteína Endopeptidasas/química , Invenciones , Inhibidores de Proteasas/farmacología , Amidas , Antivirales/farmacología , Antivirales/química
2.
Hum Vaccin Immunother ; 20(1): 2303226, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38251677

RESUMEN

Immunoglobulin A (IgA) is the most abundant antibody (Ab) in human mucosae, with secretory form (sIgA) being dominant and uniquely stable. sIgA is challenging to produce recombinantly but is naturally found in human milk, which could be considered a global resource for this biologic, justifying its development as a mucosal therapeutic. Presently, SARS-CoV-2 was utilized as a model mucosal pathogen, and methods were developed to efficiently extract human milk sIgA from donors who were naïve to SARS-CoV-2 or had recovered from infection that elicited high-titer anti-SARS-CoV-2 Spike sIgA in their milk (pooled to make LCTG-002). Mass spectrometry determined that proteins with a relative abundance of 1% or greater were all associated with sIgA. Western blot demonstrated that all batches consisted predominantly of sIgA. Compared to control IgA, LCTG-002 demonstrated significantly higher Spike binding (mean endpoint of 0.87 versus 5.87). LCTG-002 was capable of blocking the Spike receptor-binding domain - angiotensin-converting enzyme 2 (ACE2) interaction with significantly greater potency compared to control (mean LCTG-002 IC50 154ug/mL versus 50% inhibition not achieved for control), and exhibited significant neutralization activity against Spike-pseudotyped virus infection (mean LCTG-002 IC50 49.8ug/mL versus 114.5ug/mL for control). LCTG-002 was tested for its capacity to reduce viral lung burden in K18+hACE2 transgenic mice inoculated with SARS-CoV-2. LCTG-002 significantly reduced SARS-CoV-2 titers compared to control when administered at 0.25 mg/day or 1 mg/day, with a maximum TCID50 reduction of 4.9 logs. This innovative study demonstrates that LCTG-002 is highly pure and efficacious in vivo, supporting further development of milk-derived, polyclonal sIgA therapeutics.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Ratones , Animales , Leche Humana , Inmunoglobulina A Secretora , Modelos Animales de Enfermedad , Inmunoglobulina A , Ratones Transgénicos , Antivirales
3.
bioRxiv ; 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37693438

RESUMEN

Immunoglobulin A (IgA) is the most abundant antibody (Ab) in human mucosal compartments including the respiratory tract, with the secretory form of IgA (sIgA) being dominant and uniquely stable in these environments. sIgA is naturally found in human milk, which could be considered a global resource for this biologic, justifying the development of human milk sIgA as a dedicated airway therapeutic for respiratory infections such as SARS-CoV-2. In the present study, methods were therefore developed to efficiently extract human milk sIgA from donors who were either immunologically naïve to SARS-CoV-2 (pooled as a control IgA) or had recovered from a PCR-confirmed SARS-CoV-2 infection that elicited high-titer anti-SARS-CoV-2 Spike sIgA Abs in their milk (pooled together to make LCTG-002). Mass spectrometry determined that proteins with a relative abundance of 1.0% or greater were all associated with sIgA. None of the proteins exhibited statistically significant differences between batches. Western blot demonstrated all batches consisted predominantly of sIgA. Compared to control IgA, LCTG-002 demonstrated significantly higher binding to Spike, and was also capable of blocking the Spike - ACE2 interaction in vitro with 6.3x greater potency compared to control IgA (58% inhibition at ∼240ug/mL). LCTG-002 was then tested in vivo for its capacity to reduce viral burden in the lungs of K18+hACE2 transgenic mice inoculated with SARS-CoV-2. LCTG-002 was demonstrated to significantly reduce SARS-CoV-2 titers in the lungs compared to control IgA when administered at either 250ug/day or 1 mg/day, as measured by TCID50, plaque forming units (PFU), and qRT-PCR, with a maximum reduction of 4.9 logs. This innovative study demonstrates that LCTG-002 is highly pure, efficacious, and well tolerated in vivo, supporting further development of milk-derived, polyclonal sIgA therapeutics against SARS-CoV-2 and other mucosal infections.

4.
Gastroenterology ; 165(4): 999-1015, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37263302

RESUMEN

BACKGROUND & AIMS: Although transient bacteremia is common during dental and endoscopic procedures, infections developing during sterile diseases like acute pancreatitis (AP) can have grave consequences. We examined how impaired bacterial clearance may cause this transition. METHODS: Blood samples from patients with AP, normal controls, and rodents with pancreatitis or those administered different nonesterified fatty acids (NEFAs) were analyzed for albumin-unbound NEFAs, microbiome, and inflammatory cell injury. Macrophage uptake of unbound NEFAs using a novel coumarin tracer were done and the downstream effects-NEFA-membrane phospholipid (phosphatidylcholine) interactions-were studied on isothermal titration calorimetry. RESULTS: Patients with infected AP had higher circulating unsaturated NEFAs; unbound NEFAs, including linoleic acid (LA) and oleic acid (OA); higher bacterial 16S DNA; mitochondrial DNA; altered ß-diversity; enrichment in Pseudomonadales; and increased annexin V-positive myeloid (CD14) and CD3-positive T cells on admission. These, and increased circulating dead inflammatory cells, were also noted in rodents with unbound, unsaturated NEFAs. Isothermal titration calorimetry showed progressively stronger unbound LA interactions with aqueous media, phosphatidylcholine, cardiolipin, and albumin. Unbound NEFAs were taken into protein-free membranes, cells, and mitochondria, inducing voltage-dependent anion channel oligomerization, reducing ATP, and impairing phagocytosis. These were reversed by albumin. In vivo, unbound LA and OA increased bacterial loads and impaired phagocytosis, causing infection. LA and OA were more potent for these amphipathic interactions than the hydrophobic palmitic acid. CONCLUSIONS: Release of stored LA and OA can increase their circulating unbound levels and cause amphipathic liponecrosis of immune cells via uptake by membrane phospholipids. This impairs bacterial clearance and causes infection during sterile inflammation.


Asunto(s)
Pancreatitis , Humanos , Enfermedad Aguda , Ácidos Grasos no Esterificados , Ácido Oléico , Inflamación , Albúminas , Fosfatidilcolinas
5.
iScience ; 25(5): 104322, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35502320

RESUMEN

We compared three hospitalized patient cohorts and conducted mechanistic studies to determine if lipotoxicity worsens COVID-19. Cohort-1 (n = 30) compared COVID-19 patients dismissed home to those requiring intensive-care unit (ICU) transfer. Cohort-2 (n = 116) compared critically ill ICU patients with and without COVID-19. Cohort-3 (n = 3969) studied hypoalbuminemia and hypocalcemia's impact on COVID-19 mortality. Patients requiring ICU transfer had higher serum albumin unbound linoleic acid (LA). Unbound fatty acids and LA were elevated in ICU transfers, COVID-19 ICU patients and ICU non-survivors. COVID-19 ICU patients (cohort-2) had greater serum lipase, damage-associated molecular patterns (DAMPs), cytokines, hypocalcemia, hypoalbuminemia, organ failure and thrombotic events. Hypocalcemia and hypoalbuminemia independently associated with COVID-19 mortality in cohort-3. Experimentally, LA reacted with albumin, calcium and induced hypocalcemia, hypoalbuminemia in mice. Endothelial cells took up unbound LA, which depolarized their mitochondria. In mice, unbound LA increased DAMPs, cytokines, causing endothelial injury, organ failure and thrombosis. Therefore, excessive unbound LA in the circulation may worsen COVID-19 outcomes.

6.
Sensors (Basel) ; 21(17)2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34502592

RESUMEN

Human action recognition in videos has become a popular research area in artificial intelligence (AI) technology. In the past few years, this research has accelerated in areas such as sports, daily activities, kitchen activities, etc., due to developments in the benchmarks proposed for human action recognition datasets in these areas. However, there is little research in the benchmarking datasets for human activity recognition in educational environments. Therefore, we developed a dataset of teacher and student activities to expand the research in the education domain. This paper proposes a new dataset, called EduNet, for a novel approach towards developing human action recognition datasets in classroom environments. EduNet has 20 action classes, containing around 7851 manually annotated clips extracted from YouTube videos, and recorded in an actual classroom environment. Each action category has a minimum of 200 clips, and the total duration is approximately 12 h. To the best of our knowledge, EduNet is the first dataset specially prepared for classroom monitoring for both teacher and student activities. It is also a challenging dataset of actions as it has many clips (and due to the unconstrained nature of the clips). We compared the performance of the EduNet dataset with benchmark video datasets UCF101 and HMDB51 on a standard I3D-ResNet-50 model, which resulted in 72.3% accuracy. The development of a new benchmark dataset for the education domain will benefit future research concerning classroom monitoring systems. The EduNet dataset is a collection of classroom activities from 1 to 12 standard schools.


Asunto(s)
Algoritmos , Inteligencia Artificial , Benchmarking , Actividades Humanas , Humanos
7.
Sci Rep ; 9(1): 17785, 2019 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-31780808

RESUMEN

Natural products offer an abundant source of diverse novel scaffolds that inspires development of next generation anti-malarials. With this vision, a library of scaffolds inspired by natural biologically active alkaloids was synthesized from chiral bicyclic lactams with steps/scaffold ratio of 1.7:1. On evaluation of library of scaffolds for their growth inhibitory effect against malaria parasite we found one scaffold with IC50 in low micro molar range. It inhibited parasite growth via disruption of Na+ homeostasis. P-type ATPase, PfATP4 is responsible for maintaining parasite Na+ homeostasis and is a good target for anti-malarials. Molecular docking with our scaffold showed that it fits well in the binding pocket of PfATP4. Moreover, inhibition of Na+-dependent ATPase activity by our potent scaffold suggests that it targets parasite by inhibiting PfATP4, leading to ionic imbalance. However how ionic imbalance attributes to parasite's death is unclear. We show that ionic imbalance caused by scaffold 7 induces autophagy that leads to onset of apoptosis in the parasite evident by the loss of mitochondrial membrane potential (ΔΨm) and DNA degradation. Our study provides a novel strategy for drug discovery and an insight into the molecular mechanism of ionic imbalance mediated death in malaria parasite.


Asunto(s)
Antimaláricos/química , Antimaláricos/farmacología , Indoles/química , Indoles/farmacología , Malaria/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/metabolismo , Diseño de Fármacos , Descubrimiento de Drogas , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Malaria Falciparum/tratamiento farmacológico , Modelos Moleculares , Plasmodium falciparum/enzimología , Plasmodium falciparum/crecimiento & desarrollo
8.
Mol Cell Biochem ; 454(1-2): 123-138, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30390174

RESUMEN

Natural products from medicinal plants have always attracted a lot of attention due to their diverse and interesting therapeutic properties. We have employed the principles of green chemistry involving isomerization, coupling and condensation reaction to synthesize a class of compounds derived from eugenol, a naturally occurring bioactive phytophenol. The compounds were characterized structurally by 1H-, 13C-NMR, FT-IR spectroscopy and mass spectrometry analysis. The purity of compounds was detected by HPLC. The synthesized compounds exhibited anti-cancer activity. A 10-12-fold enhancement in efficiency of drug molecules (~ 1 µM) was observed when delivered with graphene oxide (GO) as a nanovehicle. Our data suggest cell death via apoptosis in a dose-dependent manner due to increase in calcium levels in specific cancer cell lines. Interestingly, the benzoxazine derivatives of eugenol with GO nanoparticle exhibited enhanced therapeutic potential in cancer cells. In addition to anti-cancer effect, we also observed significant role of these derivatives on parasite suggesting its multi-pharmacological capability.


Asunto(s)
Apoptosis , Benzoxazinas/farmacología , Portadores de Fármacos , Eugenol/farmacología , Grafito , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacología , Línea Celular Tumoral , Células HeLa , Humanos , Células MCF-7 , Neoplasias/fisiopatología
9.
Bioorg Med Chem Lett ; 28(9): 1629-1637, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29615339

RESUMEN

Development of new class of anti-malarial drugs is an essential requirement for the elimination of malaria. Bioactive components present in medicinal plants and their chemically modified derivatives could be a way forward towards the discovery of effective anti-malarial drugs. Herein, we describe a new class of compounds, 1,3-benzoxazine derivatives of pharmacologically active phytophenols eugenol (compound 3) and isoeugenol (compound 4) synthesised on the principles of green chemistry, as anti-malarials. Compound 4, showed highest anti-malarial activity with no cytotoxicity towards mammalian cells. Compound 4 induced alterations in the intracellular Na+ levels and mitochondrial depolarisation in intraerythrocytic Plasmodium falciparum leading to cell death. Knowing P-type cation ATPase PfATP4 is a regulator for sodium homeostasis, binding of compound 3, compound 4 and eugenol to PfATP4 was analysed by molecular docking studies. Compounds showed binding to the catalytic pocket of PfATP4, however compound 4 showed stronger binding due to the presence of propylene functionality, which corroborates its higher anti-malarial activity. Furthermore, anti-malarial half maximal effective concentration of compound 4 was reduced to 490 nM from 17.54 µM with nanomaterial graphene oxide. Altogether, this study presents anti-plasmodial potential of benzoxazine derivatives of phytophenols and establishes disruption of parasite sodium homeostasis as their mechanism of action.


Asunto(s)
Antimaláricos/farmacología , Benzoxazinas/farmacología , Homeostasis/efectos de los fármacos , Fenoles/farmacología , Plasmodium falciparum/efectos de los fármacos , Sodio/farmacología , Antimaláricos/síntesis química , Antimaláricos/química , Benzoxazinas/síntesis química , Benzoxazinas/química , Relación Dosis-Respuesta a Droga , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Simulación del Acoplamiento Molecular , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Fenoles/química , Plasmodium falciparum/crecimiento & desarrollo , Sodio/química , Relación Estructura-Actividad
10.
Biochem Pharmacol ; 129: 26-42, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28017772

RESUMEN

Visceral Leishmaniasis is a deadly parasitic disease caused by Leishmania donovani. Paucity exists in the discovery of novel chemotherapeutics against Leishmaniasis. In this study, we synthesized a natural product inspired Diversity Oriented Synthesis library of L. donovani Trypanothione reductase (LdTR) inhibitor ß-carboline-quinazolinone hybrids, which are different in stereochemical architecture and diverse in the bioactive chemical space. It is noteworthy that chirality affects drug-to-protein binding affinity since proteins in any living system are present only in one of the chiral forms. Upon evaluation of the hybrids, one of the chiral forms i.e. Compound 1 showed profound cytotoxic effect in micromolar range as compared to its other chiral form i.e. Compound 2. In-silico docking studies confirmed high binding efficiency of Compound 1 with the catalytic pocket of LdTR. Treatment of L. donovani parasites with Compound 1 inhibits LdTR activity, induces imbalance in redox homeostasis by enhancing ROS, disrupts the mitochondrial membrane potential, modifies actin polymerization and alters the surface topology and architecture. All these cellular modifications eventually led to apoptosis-like death of promastigotes. Furthermore, we synthesized the analogues of Compound 1 and found that these compounds show profound antileishmanial activity in the nanomolar range both in promastigotes and intracellular amastigotes. The enhanced inhibitory potential of these compounds was further supported by in-silico analysis of protein-ligand interactions which revealed high binding efficiency towards the catalytic pocket of LdTR. Taken together, this study reports the serendipitous discovery of ß-carboline-quinazolinone hybrids with enhanced antileishmanial activity along with the in-depth structure-activity relationships and mechanism of action of these analogues.


Asunto(s)
Antiprotozoarios/farmacología , Carbolinas/farmacología , Homeostasis/efectos de los fármacos , Leishmania donovani/efectos de los fármacos , Quinazolinonas/farmacología , Animales , Carbolinas/química , Línea Celular , Humanos , Leishmania donovani/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Oxidación-Reducción , Quinazolinonas/química , Especies Reactivas de Oxígeno/metabolismo
11.
Syst Synth Biol ; 9(Suppl 1): 17-21, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26702304

RESUMEN

Plasmodium falciparum perforin like proteins (PfPLPs) are an important arsenal for the entry and exit of malaria parasites. These proteins bind and oligomerize on the membrane in calcium dependent manner and form an open pore. The calcium dependent pore forming activity of PLPs is usually conferred by their C2 like C-terminal domain. Here, we have tried to elucidate the calcium binding residues in the C-terminal domain of PfPLP1, a member of P. falciparum PLPs, playing a crucial role in calcium dependent egress of blood stage parasites. Through our in silico study, we have found that the C-terminal domain of all PfPLPs is rich in ß-pleated sheets and is structurally similar to C2 domain of human perforin. Furthermore, homology search based on 3-D structure of PfPLP1 confirmed that it is structurally homologous to the calcium binding C2 domain of many proteins. On further elucidation of the calcium-binding pocket of the C2 like domain of PfPLP1 showed that it binds to two calcium molecules. The calcium-binding pocket could be a target of novel chemotherapeutics for studying functional role of PfPLPs in parasite biology as well as for limiting blood stage growth of malaria parasite.

12.
Syst Synth Biol ; 9(Suppl 1): 27-37, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26702306

RESUMEN

Carotenoids represent a diverse group of pigments derived from the common isoprenoid precursors and fulfill a variety of critical functions in plants and animals. Phytoene synthase (PSY), a transferase enzyme that catalyzes the first specific step in carotenoid biosynthesis plays a central role in the regulation of a number of essential functions mediated via carotenoids. PSYs have been deeply investigated in plants, bacteria and algae however in apicomplexans it is poorly studied. In an effort to characterize PSY in apicomplexans especially the malaria parasite Plasmodium falciparum (P. falciparum), a detailed bioinformatics analysis is undertaken. We have analysed the Phylogenetic relationship of PSY also referred to as octaprenyl pyrophosphate synthase (OPPS) in P. falciparum with other taxonomic groups. Further, we in silico characterized the secondary and tertiary structures of P. falciparum PSY/OPPS and compared the tertiary structures with crystal structure of Thermotoga maritima (T. maritima) OPPS. Our results evidenced the resemblance of P. falciparum PSY with the active site of T. maritima OPPS. Interestingly, the comparative structural analysis revealed an unconserved unique loop in P. falciparum OPPS/PSY. Such structural insights might contribute novel accessory functions to the protein thus, offering potential drug targets.

13.
Eur J Med Chem ; 95: 41-8, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25794788

RESUMEN

Here we described a natural product inspired modular DOS strategy for the synthesis of a library of hybrid systems that are structurally and stereochemically disparate. The main scaffold is a pyrroloisoquinoline motif, that is synthesized from tandem Pictet-Spengler lactamization. The structural diversity is generated via "privileged scaffolds" that are attached at the appropriate site of the motif. Screening of the library compounds for their antiplasmodial activity against chloroquine sensitive 3D7 cells indicated few compounds with moderate activity (20-50 µM). A systematic comparison of structural intricacy between the library members and a natural product dataset obtained from ZINC(®) revealed comparable complexity.


Asunto(s)
Antimaláricos/farmacología , Productos Biológicos/farmacología , Eritrocitos/efectos de los fármacos , Malaria/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Antimaláricos/química , Células Cultivadas , Técnicas Químicas Combinatorias , Descubrimiento de Drogas , Humanos , Malaria/parasitología , Estructura Molecular , Plasmodium falciparum/crecimiento & desarrollo , Relación Estructura-Actividad , Trofozoítos/efectos de los fármacos
14.
Saudi J Ophthalmol ; 29(2): 103-8, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-27616909

RESUMEN

PURPOSE: To evaluate the safety and efficacy of Ahmed glaucoma valve (AGV) implantation in refractory glaucoma in Northern Indian eyes. BACKGROUND: The success rate of trabeculectomy remains low in cases of refractory glaucoma even with the use of antifibrotics. Glaucoma drainage devices have proven to be more efficacious in reducing intraocular pressure (IOP) in these glaucomas. METHODS: Retrospective records of 55 consecutive patients who underwent AGV implantation at Dr. Shroff's Charity Eye Hospital, New Delhi, India from January 2003 to December 2012 were reviewed. Pre-operative data included age, gender, eye laterality, specific diagnosis, number of anti-glaucoma medications, number of prior incisional surgeries, visual acuity and IOP on medical treatment. Postoperative data included visual acuity and IOP on day one, 1 week, 1 month, 3 months, 6 months, 1 year and yearly thereafter, number of anti-glaucoma medications, any complication or additional surgical intervention required. Success was defined as IOP >5 and <22 mmHg with or without treatment. RESULTS: Mean IOP decreased from 39.71 ± 8.99 pre-operatively to 17.52 ± 5.72 mmHg at last follow-up (p < 0.001) and number of medications reduced from 3.27 ± 0.84 to 1.25 ± 0.88 (p < 0.001). Visual acuity remained within one Snellen line or improved at last follow-up in 47 cases (85.4%). The cumulative probability of success was 85.45% at 1 year and 79.63% at 3 years. The incidence of post-operative complications was 25.45%. CONCLUSION: AGV implantation has proven to be safe and is effective in controlling IOP in refractory glaucoma in Northern Indian eyes.

15.
J Agric Food Chem ; 62(47): 11357-68, 2014 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-25363450

RESUMEN

The search for cocoa butter equivalents in food and pharmaceutical industries has been gaining importance. In the present study, mango butter was explored as cocoa butter equivalent. Aqueous gelatin solution (20% w/w) containing cocoa butter and mango butter water-in-oil (fat) type emulsion gels were prepared by hot emulsification method. XRD and DSC melting profiles suggested the presence of unstable polymorphic forms (α and ß') of fats in the emulsion gels. The crystal size and solid fat content analyses suggested that the presence of aqueous phase might have hindered the transformation of unstable polymorphic forms to stable polymorphic form (ß) in the emulsion gels. Fat crystals in the emulsion gels were formed by instantaneous nucleation via either uni- or bidimensional growth (Avrami analysis). The viscoelastic nature of the emulsion gels was evaluated by modified Peleg's analysis (stress relaxation study). Results inferred that the physical, thermal, and mechanical properties of mango butter emulsion gels are comparable to those of cocoa butter emulsion gels. On the basis of preliminary studies, it was suggested that the mango butter emulsion gels may have potential to be used as cocoa butter equivalents.


Asunto(s)
Grasas de la Dieta/análisis , Manipulación de Alimentos/métodos , Geles/química , Mangifera/química , Fenómenos Químicos , Emulsiones , Ácidos Grasos/análisis , Difracción de Rayos X
16.
Malar J ; 13: 467, 2014 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-25431142

RESUMEN

BACKGROUND: Malaria remains the world's most important devastating parasitic disease. Of the five species of Plasmodium known to infect and cause human malaria, Plasmodium falciparum is the most virulent and responsible for majority of the deaths caused by this disease. Mainstream drug therapy targets the asexual blood stage of the malaria parasite, as the disease symptoms are mainly associated with this stage. The prevalence of malaria parasite strains resistance to existing anti-malarial drugs has made the control of malaria even more challenging and hence the development of a new class of drugs is inevitable. METHODS: Screening against different drug resistant and sensitive strains of P. falciparum was performed for few bicyclic lactam-based motifs, exhibiting a broad spectrum of activity with low toxicity generated via a focussed library obtained from diversity oriented synthesis (DOS). The synthesis and screening was followed by an in vitro assessment of the possible cytotoxic effect of this class of compounds on malaria parasite. RESULTS: The central scaffold a chiral bicyclic lactam (A) and (A') which were synthesized from (R)-phenylalaninol, levulinic acid and 3-(2-nitrophenyl) levulinic acid respectively. The DOS library was generated from A and from A', by either direct substitution with o-nitrobenzylbromide at the carbon α- to the amide functionality or by conversion to fused pyrroloquinolines. Upon screening this diverse library for their anti-malarial activity, a dinitro/diamine substituted bicyclic lactam was found to demonstrate exceptional activity of >85% inhibition at 50 µM concentration across different strains of P. falciparum with no toxicity against mammalian cells. Also, loss of mitochondrial membrane potential, mitochondrial functionality and apoptosis was observed in parasite treated with diamine-substituted bicyclic lactams. CONCLUSIONS: This study unveils a DOS-mediated exploration of small molecules with novel structural motifs that culminates in identifying a potential lead molecule against malaria. In vitro investigations further reveal their cytocidal effect on malaria parasite growth. It is not the first time that DOS has been used as a strategy to identify therapeutic leads against malaria, but this study establishes the direct implications of DOS in scouting novel motifs with anti-malarial activity.


Asunto(s)
Antimaláricos/síntesis química , Antimaláricos/farmacología , Lactamas/síntesis química , Lactamas/farmacología , Plasmodium falciparum/efectos de los fármacos , Compuestos Bicíclicos Heterocíclicos con Puentes/síntesis química , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Supervivencia Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Humanos , Ácidos Levulínicos/síntesis química , Ácidos Levulínicos/farmacología , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/fisiología
17.
Mol Biochem Parasitol ; 197(1-2): 15-20, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25261593

RESUMEN

Resistance to almost all class of antimalarial drugs has emerged as one of the greatest challenges to malaria control. Strategies to limit the advent and spread of drug-resistant malaria include development of new drugs and its combination with existing drugs. In this work we provide a strong evidence for phytonutrient lycopene, a non-provitamin A carotenoid, to be effective against Plasmodium falciparum growth in vitro. Consistent with the previous findings in mammalian cells, lycopene's prooxidant activity promoted the production of reactive oxygen species (ROS) in P. falciparum. Also a significant loss of mitochondrial functionality and thus, the loss of the membrane potential was observed in lycopene treated schizonts. Taken together, our results indicated that the generation of ROS and loss of mitochondrial membrane potential accounted for lycopene's cytotoxicity against P. falciparum growth in vitro. These insights will help in the design of new treatment strategies to combat malaria.


Asunto(s)
Antimaláricos/farmacología , Carotenoides/farmacología , Eritrocitos/parasitología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/crecimiento & desarrollo , Eritrocitos/metabolismo , Eritrocitos/patología , Humanos , Estadios del Ciclo de Vida , Licopeno , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Factores de Tiempo
18.
CNS Neurol Disord Drug Targets ; 13(7): 1263-72, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25230235

RESUMEN

GNE (UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase) is a bifunctional enzyme which catalyzes the conversion of UDP-GlcNAc to ManNAc and ManNAc to ManNAc 6-phosphate, key steps in the sialic acid biosynthesis. Mutations in GNE lead to a neuromuscular disorder, Hereditary Inclusion Body Myopathy (HIBM). A major limitation in understanding the function of GNE is lack of recombinant full length GNE (rGNE) protein for detailed biophysical and structural characterization. In the present study, we have used Dictyostelium discoideum (Dd) as an alternate host for successful expression and secretion of functionally active form of GNE and its mutant proteins. We have generated Dd-AX3 stable cell lines harboring wtGNE or its mutants with Dd specific secretory signal sequence, PsA (prespore antigen). Upon starvation, rGNE was secreted in the medium from secretory vesicles. The rGNE was functionally active with epimerase activity (54±5.2 mU/mg) and kinase activity (66.45±3.48 mU/mg), while both epimerase and kinase activities of mutant GNE were drastically reduced. These activities were found to be statistically significant at p value < 0.05. Our study clearly demonstrates that Dd can be used as an expression host for the production of recombinant and functionally active form of GNE and its mutant proteins that can be used for biophysical characterization and structural determination of GNE to understand the pathomechanism of HIBM.


Asunto(s)
Dictyostelium/metabolismo , Técnicas de Transferencia de Gen , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Carbohidrato Epimerasas/genética , Carbohidrato Epimerasas/metabolismo , Humanos , Datos de Secuencia Molecular , Mutación , Síndromes Neoplásicos Hereditarios , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vesículas Secretoras/metabolismo , Neoplasias Cutáneas , Inanición
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...